Hussein Al-Natsheh. « Text Mining Approaches for Semantic Similarity Exploration and Metadata Enrichment of Scientific Digital Libraries » [thèse]

« (…) L’objectif principal de nos travaux est d’élargir ou développer le spectre des connaissances des chercheurs travaillant dans un domaine interdisciplinaire lorsqu’ils utilisent les systèmes de recherche d’information des bibliothèques numériques multidisciplinaires. Le problème se pose cependant lorsque de tels chercheurs utilisent des mots-clés de recherche dépendant de la communauté dont ils sont issus alors que d’autres termes scientifiques sont attribués à des concepts pertinents lorsqu’ils sont utilisés dans des communautés de recherche différentes. Afin de proposer une solution à cette tâche d’exploration sémantique dans des bibliothèques numériques multidisciplinaires, nous avons appliqué plusieurs approches de fouille de texte. Tout d’abord, nous avons étudié la représentation sémantique des mots, des phrases, des paragraphes et des documents pour une meilleure estimation de la similarité sémantique. Ensuite, nous avons utilisé les informations sémantiques des mots dans des bases de données lexicales et des graphes de connaissance afin d’améliorer notre approche sémantique. En outre, la thèse présente quelques implémentations de cas d’utilisation du modèle que nous avons proposé. (…) »

source > tel.archives-ouvertes.fr, Artificial Intelligence [cs.AI]. Université de Lyon, 2019. English. ⟨NNT : 2019LYSE2062⟩. ⟨tel-02476157⟩

Accueil